Cree Power – Sept 2014 HMW Direct-Drive Motor Workshop

Jeff Casady, +001.919.308.2280 or jeffrey_casady@cree.com

John Palmour, +001.919.796.4243 or john_palmour@cree.com

Power products commercial roadmap for SiC from 2012-2020 — Jeff Casady

Power products rel data & pricing forecasts for 650V-15kV SiC power modules, MOSFETs & diodes – John Palmour

www.cree.com

Copyright © 2014, Cree Inc.

Section

Power Products Commercial Roadmap from 2012-2020

Cree SiC MOSFET Portfolio Beginning in 2011

>13 products and growing

1200V MOSFETs (Bare Die)

- CPM2-1200-0025 (25mΩ; 60A)

- CPM2-1200-0040 (40m Ω ; 40A)

- CPM2-1200-0080 (80m Ω ; 20A)

- CPM2-1200-0160 (160m Ω ; 10A)

1200V MOSFETs (TO-247)

- C2M0025120D (25m Ω ; 60A)

- C2M0040120D (40m Ω ; 40A)

- C2M0080120D (80m Ω ; 20A)

- C2M0160120D (160mΩ;10A)

- C2M0280120D (280m Ω ; 7A)

1700V MOSFETs

New 1700 V MOSFETs needed for PV inverters with 1.0-1.5 kV bus voltages

- C2M1000170D $(1\Omega, 3.0A)$ TO-247

<u>CPM2-1700-0040 (40mΩ; 50A)</u> Bare Die

Cree All-SiC Power Module Portfolio Beginning in 2012

> 7 products and growing

50 mm Platform Half-Bridge Configuration

CAS100H12AM1 (1200V, 100A)

XAS125H12AM2 (1200V, 125A)

XAS125H17AM2 (1700V, 125A)

45 mm Platform 6-Pack Configuration

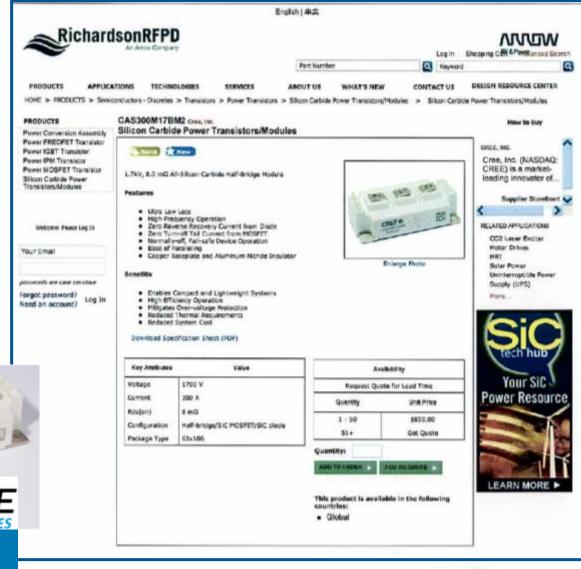
CCS050M12CM2 (1200V, 50A 6-pk)

CCS020M12CM2 (1200V, 20A 6-pk)

62 mm Platform Half-Bridge Configuration

CAS300M12BM2 (1200V, 300A)

CAS300M17BM2 (1700V, 250A)


Cree confidential information protected under NDA

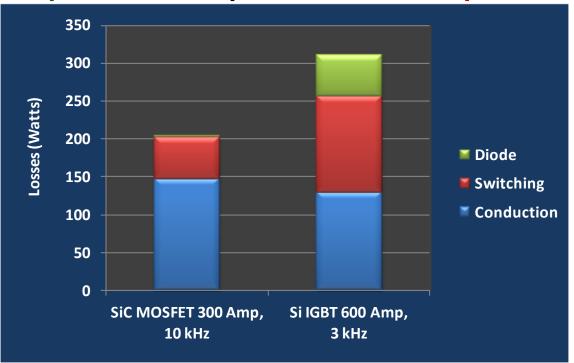
Cree 1700V, 8mΩ, ½ bridge power module available NOW

Full commercial release – September 2014

Available globally – Digikey, Mouser, Richardson/Arrow (right), ... ~ \$850 single unit

Gate drivers, app notes available

2 channel; 1.2/1.7 kV 62 mm module gate driver direct mount


Section -

SiC MOSFET Roadmap

SiC current ratings are much less than Si

Si Amps are <u>not</u> SiC Amps

300 Amp SiC More Capable than 600 Amp Si IGBTs!

- System cost reduction of 20% using 1200V SiC
 - Increased frequency reduces size and weight of magnetics
 - Lower losses reduce system cooling requirements
 - Amperage rating for SiC less than half required for Si IGBTs

SiC voltage ratings are much less than Si?

6.5 kV Si IGBT used for 3.6 kV drives (100 cosmic ray FIT rate)

4.5 kV SiC MOSFET used for 3.6 kV line?

10 kV SiC MOSFET used for 7.2 kV?

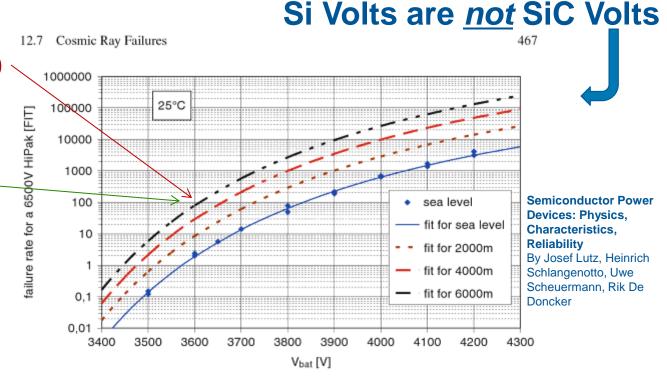
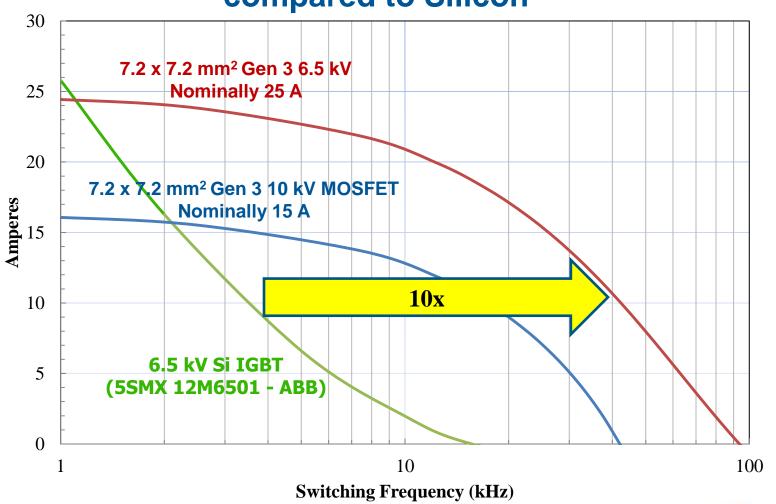
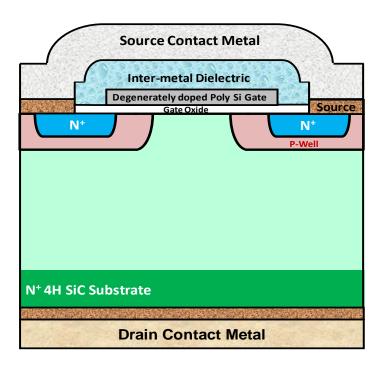



Fig. 12.49 Cosmic ray failure rate at $T = 25^{\circ}$ C for the 6.5 kV IGBT module 5SNA0600G650100 from ABB. Figure from [Kam04]


- Medium Voltage SiC MOSFET roadmap must respond to application
 - 10X higher switching frequency, lower thermal dissipation possible
 - Cosmic ray, other reliability metrics may be 100X better
 - All requirements, eg. short circuit, surge must be understood

10X higher switching for SiC MOSFET than Si IGBT

Dramatic Reduction in System Weight and Complexity compared to Silicon

3rd Generation SiC MOSFETs

Gen 2 DMOS

Commercially released in 2013

Smaller pitch Source Contact Metal Inter-metal Dielectric Degenerately doped Poly Si Gate Gate Oxide Source **Optimized doping** N⁺ 4H SiC Substrate **Drain Contact Metal**

Gen 3 DMOS

Same high reliability DMOS Structure, but optimized to dramatically reduce die size

3.3 kV, 40 m Ω , "40 A" MOSFET Engineering Samples

PRELIMINARY

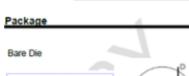
3.3kV

Z-FETTM Silicon Carbide MOSFET

N-Channel Enhancement Mode Bare Die

Vos	= 3300 V
I _o (T _c =90°C)	= 45 A
Ros(25°C)	= 40 mΩ

Features


- Industry Leading R_{OS(on)}
- High Speed Switching
- Temperature-Independent Switching
- Easy to Parallel
- Simple to Drive
- Lead-Free

Benefit:

- Higher System Efficiency
- High Temperature Operation
- High Switching Frequency Operation
- Reduced Cooling Requirements
- Avalanche Ruggedness

Applications

- Solar Inverters
 Motor Drives
- EV Chargers
- UPS

Part Number	Package	Marking

Electrical Characteristics (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Min Typ Max	Unit	Test Conditions	Note	es
V _{(BR)OSS}	Drain – Source Breakdown Voltage	Avai	ماما	la undar		
Vosan)	Gate Threshold Voltage	Avai		le under DA		
loss	Zero Gate Voltage Drain Current		IN.	DA		
loss	Gate-Source Leakage Current					
R _{OS(on)}	Drain-Source On-State Resistance					_
9h	Transconductance					6
C _{ins}	Input Capacitance					7
	Output Capacitance					
Cms	Reverse Transfer Capacitance					
R ₀	Internal Gate Resistance					
Eon	Turn-On Switching Loss					
Eoff	Turn-Off Switching Loss					3

Maximum Ratings (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Notes
l _o	Continuous Drain Current				
Opuse	Pulsed Drain Current				
Eas	Single Pulse Avalanche Energy				
EAR	Repetitive Avalanche Energy				
IAR	Repetitive Avalanche Current				
V _{gs}	Gate - Source Voltage				
Ptot	Maximum Power Dissipation				
T _J , T _{stg}	Operating Junction and Storage Temperature Range				
TL	Solder Temperature				

Mechanical Dimensions

Parameter	Unit
Die Dimensions (L x W)	mm
Exposed Source Pad Metal	mm
Dimensions	
Gate Pad Dimensions	mm
Chip Thickness	μm
Frontside (Source)	μm
metallization (Al)	
Frontside (Gate)	μm
metallization (Al)	
Backside (Drain)	μm
metallization (Ni/Ag)	

Note:

Assumes a thermal resistance junction to case of = 0.3 *C/W.

10 kV, 300 mΩ, "20 A" MOSFET Engineering Samples

PRELIMINARY

CPM3-10000-0270

Z-FETTM Silicon Carbide MOSFET N-Channel Enhancement Mode Bare Die or Engineering Sample Package

Features

- Industry Leading Roscon
- High Speed Switching
- Temperature-Independent Switching
- Easy to Parallel
- Simple to Drive
- Lead-Free

Benefits

- Higher System Efficiency
- High Temperature Operation
- High Switching Frequency Operation
- Reduced Cooling Requirements
- Avalanche Ruggedness

Applications

- Grid tied Solar Inverters
- Medium Voltage Motor Drives
- Power Distribution in Data Centers and Factories
- Railway Applications

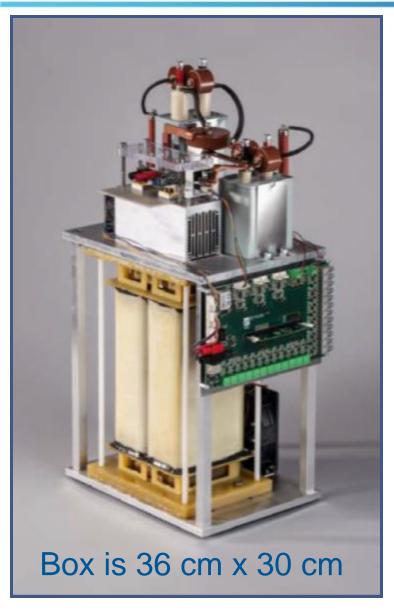
	Vos	= 10 kV
Γ	I _o (25°C)	= 30 A
	R _{os} (25°C)	= 270 mΩ
Package		
Bare Die		
		√P _D
		\mathbb{I}
		(+)

Part Number	Package	Marking			
	Die	NA			

Maximum Ratings (Tc = 25°C unless otherwise specified)

Symbol	Parameter			
lo	Continuous Drain Current			
Course	Pulsed Drain Current	i		
E _{AS}	Single Pulse Avalanche Energy			
E _{AR}	Repetitive Avalanche Energy			
lur	Repetitive Avalanche Current			
V _{GS}	Gate - Source Voltage	i		
Ptot	Maximum Power Dissipation			
T _J , T _{elg}	Operating Junction and Storage Temperature Range			
TL	Solder Temperature	260	*C	1.6mm (0.063") from case for 10 sec

Electrical Characteristics (T_C = 25°C unless otherwise specified)


Symbol	Parameter	Min Typ Max	Unit	Test Conditions	Notes
V _{(BR)DSS}	Drain – Source Breakdown Voltage	Avail	_ h	la under	
Vosmo	Gate Threshold Voltage	Avaii		le under DA	
loss	Zero Gate Voltage Drain Current		-		
loss	Gate-Source Leakage Current				
R _{OS(IM)}	Drain-Source On-State Resistance				
9h	Transconductance				5
Ciss	Input Capacitance				
Coss	Output Capacitance				
Cras	Reverse Transfer Capacitance				
Ro	Internal Gate Resistance				
Eon	Turn-On Switching Loss				
E _{OFF}	Turn-Off Switching Loss				3

Mechanical Dimensions

Parameter	Unit
Die Dimensions (L x W)	mm
Exposed Source Pad Metal	mm
Dimensions	
Gate Pad Dimensions	mm
Chip Thickness	μm
Frontside (Source)	μm
metallization (Al)	
Frontside (Gate)	μm
metallization (Al)	
Backside (Drain)	μm
metallization (Ni/Ag)	

10 kV SiC MOSFETs in Boost Converter (Fraunhofer ISE)

Efficient, "transformer-less" power distribution to medium voltage grid

- Fraunhofer DC-DC converter used 10kV SiC MOSFETs from Cree
- 30 kW DC voltage converter with 3.5 kV input voltage, 8.5 kV output voltage, 98.5% efficient
- 8kHz switching frequency 15X higher than possible with conventional silicon devices in the same voltage range.

ISE

A Highly Efficient DC-DC-Converter for Medium-Voltage Applications
Jürgen Thoma, David Chilachava, Dirk Kranzer
ENERGYCON 2014 • May 13-16, 2014 • Dubrovnik, Croatia

Section

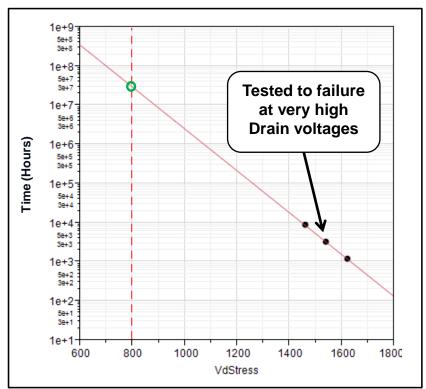
Power products rel data & pricing forecasts for 650V-15kV SiC power modules, MOSFETs & diodes

Section

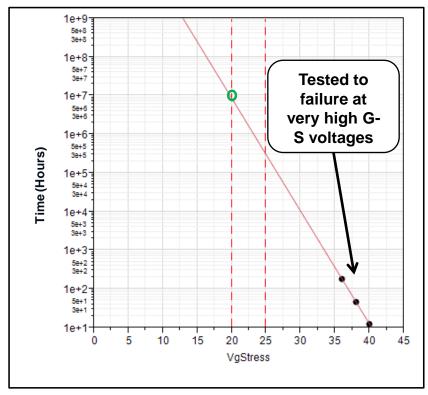
Power Products Reliability Data

Proven Reliability with Industry-Leading Standards

Cree Field Failure Rate Data since Jan. 2004 through Mar. 2014

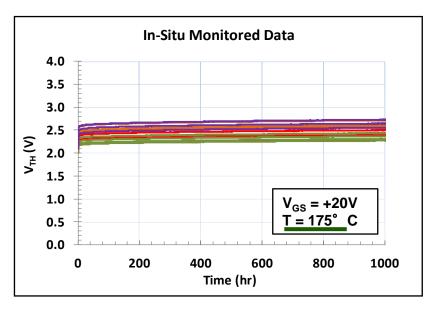

Prod	luct	Device Hours	FIT (fails/billion hrs)
CSDx	xx60	426,000,000,000	0.05
C2Dx	x120	146,00,000,000	0.54
C3Dx	xx60	367,000,000,000	0.02
C4Dxx	x120	26,700,000,000	0.04
SiC MC	SFET	1,140,000,000	3.5
Tot	tal	972 Billion	0.12

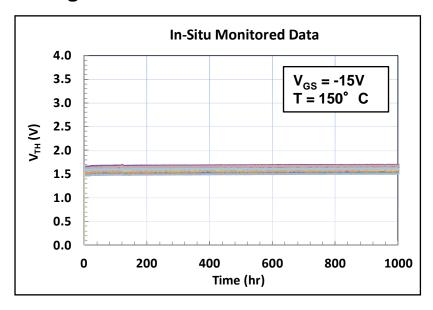
- 0.12 FIT rate is 10 times lower than the typical silicon
- SiC diodes first released in 2001
- SiC MOSFETs first released in 2011



Reliability Meets All Commercial and Military Requirements

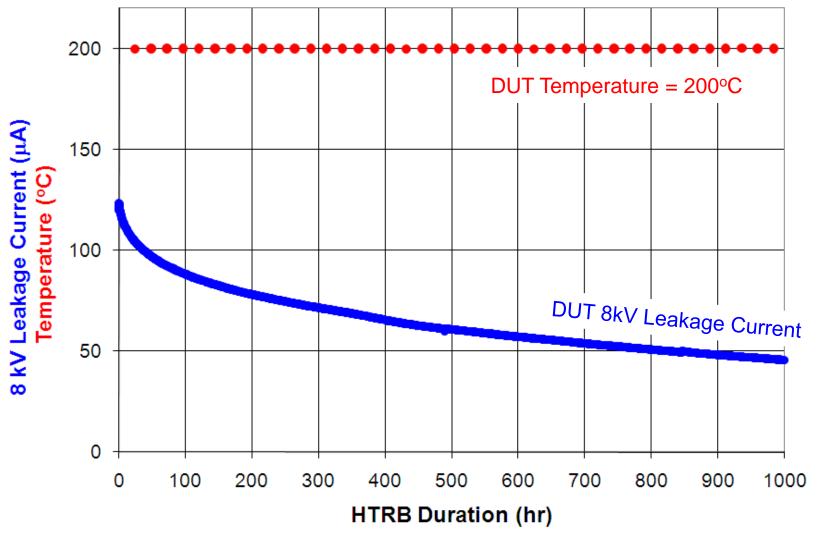
Accelerated HTRB Testing at 150° C


Accelerated TDDB Testing at 150° C


- MOSFETs have extrapolated MTTF of 30 million hours
- Gate oxides have extrapolated MTTF of 8 million hours at +20V continuous

C2M V_{TH} Stability at High Temperature, +/- DC Bias

Positive Bias Accelerated at 175° C


Negative Bias Accelerated at -15V

- Extremely stable for 1,000 hours under positive and negative bias
 - Accelerated beyond data sheet to see any measurable change
 - Average shift under positive bias: $\Delta V_{TH} = 0.06 \text{ V}$, $\Delta R_{DS-ON} = 0.1 \text{ m}\Omega$
 - Average shift under negative bias: $\Delta V_{TH} = 0.01 \text{ V}$, $\Delta R_{DS-ON} = 3.2 \text{ m}$ Ω

MOSFET Off-State Blocking Reliability

8 kV, 200°C, 1000 hr HTRB of 10 kV SiC MOSFET

Section

Pricing Forecasts

Vertical integration in the power semiconductor industry

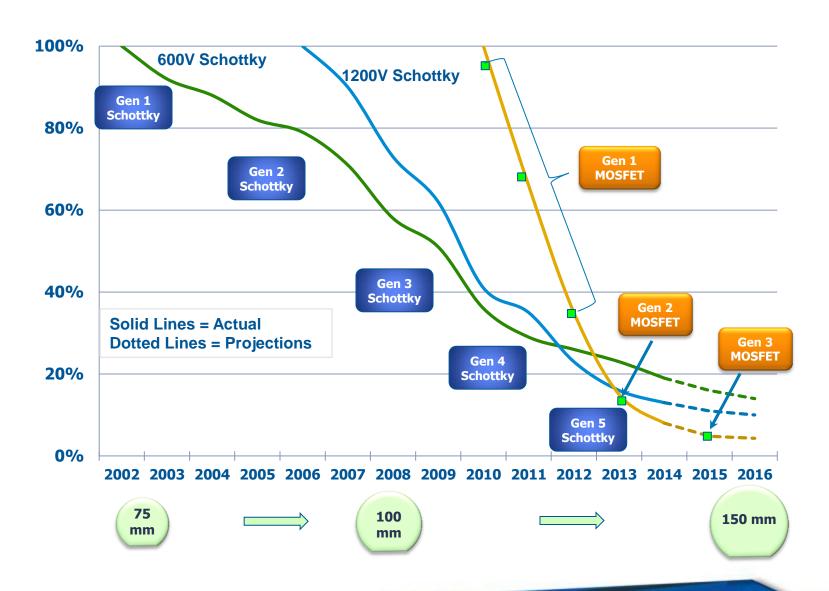
Global **SiC** Power **Chip** Supplier Rankings (2013)

2013 Rank	Supplier	HQ Location	
1	Cree	USA	
2	Infineon	Germany	Top 5 suppliers (95% of
3	Mitsubishi	Japan	market) with US supplier (Cree) No. 1 shown on left
4	ROHM	Japan	
5	ST Micro	FR-IT	

Global **Si** and **SiC** <u>Power Module</u> Market Share (2011)

2013 Rank	Supplier	HQ Location	
1	Mitsubishi (inc Powerex)	Japan	Vertical, captive chip supply
2	Infineon	Germany	Vertical, captive chip supply
3	Fuji	Japan	Vertical, captive chip supply
4	Semikron	Germany	Foundry module vendor
5	Hitachi and Sanyo (tie)	Japan	Vertical and foundry mix

SiC Leadership – Leveraging Vertical Integration & Scale



150mm wafer capability in RTP facility
> \$40M invested in RTP fab capacity expansion over
3 years

- Vertically integrated \$1.65 B business:
 - Virtually all revenue based on SiC substrates
 - Unmatched command of supply chain from raw materials to finished products (including power and RF devices, LEDs, light bulbs and fixtures)
 - Avoiding margin stacking in supply chain provides attractive cost structure

Cost reduction from volume and device refinement

Cree is the leader in Silicon Carbide power semiconductors.

Cree is one of world's fastest-growing power semiconductor manufacturers.

Cree has excellent capitalization.

Cree is vertically integrated—for an efficient supply chain and product traceability.

Cree has the technology roadmap for improved SiC production and cost reduction.